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ABSTRACT

Analytical approximate solutions for the diffraction by a rigid wedge are derived
in both frequency and time domain. The analysis starts with the exact solution in
time domain. A new type of plot is presented which helps to understand how
diffraction evolves around the boundaries of geometrical acoustics discontinuity.
Analytical approximate solution for all types of incident radiation are presented as
short time asymptotics of the exact solutions in time domain. The three solutions are
presented in a unified form. Finally, using the Fourier transform approximate
solutions are obtained in the frequency domain in a unified form for all types of
incident radiation.

Néa, avaivtikg Avon yia. Tov vwOL0YIGUO TOD OKOVGTIKOD
mediov mepifiaons yopw amo aKoveTIKd CKANPH GPVa,
OT0 TEALO TOV YXPOVOL KOl GTO TEOLO TV CUYVOTHTWV

INEPIAHYH

Avotvtikés mpoaeyyiotikés Aboeis yia v wepibloon amd uio oxovoTiKG GKANpH
OPIVa TPOTEIVOVTAL TOGO OTO TEDLO TWV GUYVOTHTWY 000 KOL 0TO TEIO TOv ypovov. H
avaloan Eexva ue v axpifn Abon oo medio tov ypovov. Ilapoveidletar évag véog
TOTOG YpopHuatos mov Ponbe oty KaTavonon Tov Omov ue oV omoio n wepiblaon
eleliooetor yopw oOVOPO. THG QODVEYELOS TOD YEWUETPIKOD GKOVOTIKOD TEOLOV.
Avolotikés mpooeyyiotikés ADOEIS Yl OAODS TOVS TOTOVS THS TPOOTITTOVOOS
OKTIVOLOAIOG TapovaIGLoVTIal WG OOVUTTWTIKES UIKPDV YPOVWY TV aKpIfny ADoewv
oto medio tov ypovov. Or tpeis Lboeig mopovoialovion o€ uio. eviaio uopen. Télog,
XPHOYWOTOIOVTOS TO UETOTYNUOTIUO Fourier, mpooeyyiotikes Aboeis Aaufavoviar oto
TEDIO TV GUYVOTHTMV GE IO EVIGIO. HOPPY YIO. OAOVS TOVS TOTOVS TPOCTILTOVGOS
akTivoflolriag.
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Introduction

Mathematical solutions for the diffraction field around a wedge appeared more
than a century ago. The reader is referred to the work of ref. [1] for a review of
rigorous solutions. Many analytical approximate solutions appeared over time as
asymptotics of rigorous formulas in both time and frequency domain. Detail
presentation of the analytical approximate solutions can be found in the introduction
sections of ref [2] (for time domain) and ref [3] (for frequency domain). The benefit
of the approximate solutions is that they are easier to calculate compared to the
rigorous solutions and they also can provide benefits in physical interpretation of the
diffraction phenomenon.

In this paper new analytical approximate solutions for the diffraction of a
spherical wave by a rigid wedge are presented in both time and frequency domain.
The study starts with a review of the exact solution in time domain. A new type of
diffraction field plot is introduced, which aims to contribute to the understanding of
diffraction formulation. A solution is initially derived as short time asymptotic of the
exact solution in time domain. An approximate solution in frequency domain is then
obtained using the Fourier transform. Finally, approximate solutions for cylindrical
and plane waves are presented and the solution is reformulated into a unified form
for all types of incident radiation.

1. Exact Solution in time domain

The studied solution was derived in a previous work of the authors’[2] as an
approximation of the Biot-Tolstoy exact solution valid for short times. In the
following we present the formulations of the Biot-Tolstoy the authors’ approximate
formula in the form of impulse responses.

The Biot-Tolstoy formula is given by:
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where c is the speed of sound (6;,r;,z;) and (6, I;,z;) are the source and

b, =+

receiver coordinates on a cylindrical frame of reference that has the edge of the
wedge (z-axis) as symmetry axis z. The diffraction signal arrives to the receiver at

time t=L/c, where L is the least diffraction path L:\/(rS ) +(zs-2) - A

detailed presentation of the wedge geometry is shown in Fig. 1 of ref [2]. The terms
F and  are functions of time t and distances Iy, z,, 15,2, While the terms b, are

functions of the source, receiver and wedge angles 6,,6;,€2. The solution is
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summation of 4 similar terms that only have different terms b, . In the present paper,
b; terms are defined as

b1: e_R 0_5+£7b2:9_R+9_S+£7

Yy v v Yy v v (1.2)
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. As it will be shown in the following b; are important parameters for the diffraction

problem and henceforth they will be called diffraction angles.
The unit step response of the Biot Tolstoy can be calculated as,

Pl = D Pk —z [ pladt, (1.3)

Despite the singularity of the |mpulse response, it can be proven that the unit step
response is not singular. Specifically, one can express p!_, as,
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then the Holder inequality yields:
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Thus, it is proven that p®! is bounded.

exact

2. Diffraction Signal new type of plots

The exact unit step response can be found by Eqg. (1.3) with no singularities
using a numerical quadrature technique. The authors have used the ‘quadgk’
command of MATLAB which is based on adaptive Gauss-Kronrod quadrature.

The diffraction signal depends primarily on the angle parameters 6,,6,,Q. The

shadow boundaries divide the diffraction field in regions that contain different
number of geometrical acoustics contributions (incidence or reflections). For an
open wedge the two shadow boundaries are the shadow boundary of incidence and
the shadow boundary of reflection from the face of the wedge facing the source or
the shadow boundaries of the reflections from both wedge faces. For closed wedges
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the signal might be subject to multiple reflections before reaching the receiver.
Starting from one face of the edge multiple reflections occur between the faces. The
phenomenon stops when the last reflection does not illuminate the opposing edge,
thus creating a shadow boundary. The same process is repeated starting from the
other face of the wedge to determine the other shadow boundary. This last reflection
is called exiting reflection. For closed wedges, the shadow boundary is the plane
determined by the image source of the exiting reflection (named exiting image
source) and the edge line. For open it is the plane determined by the image source of
the sources of reflection or the actual source and the edge line. The magnitude of the
exiting reflections, or first reflections, or incident signal is represented by 1/R;,
where R is the distance of the receiver and the corresponding image source or
source. The angular locations of the shadow boundaries 6,;,6,, and of the image

source 6, ,6,, differ by 7. The shadow boundary angular locations can be found

by:
b _ slﬂ, s, = sign{sinE”JrHs H
Y 4 4 2.1)
G _ s, i .S, = sign{sin[”_es ﬂ
e Y v
and thus,
Og=0,+7 2.2)
O =0, +7 . .
Based on the sign parameters s;,S, Eq. (1.2) can be reformulated as,
bl =_R bl b —H_R +5 ﬁ
1 1
7 e e
9 6 6, (23)
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Equation (2.3) allows us to interpret the terms b; as normalized distances between

6, or —g, from the shadow boundary locations &, and 4, . Specifically, it can be
proven that:

1
p::alct p::att - at bl =0 HR = gbl
fors ="'+, 2R1
p;jazt p::azt at |b2|min ’b2 #0
X . (2.4)
p::act p:;act max at |b1|min ’b1 #0
for Sl == us,2 us,2 -
Pexact | = pexact - E at b2 =0e 9R = Bbl
Same holds for s,and the parameters b;,b, . From the two factors p and pS2

associated with the shadow boundary Bl only one handles the discontinuity of the
geometrical acoustic signal at the shadow boundary. For example, for s, ='+'only
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us,1

Pecc| Pecomes half of the

b, becomes zero in 0<6@, <yr and thus only

us,1

Pecct| then decreases until it reaches a minimum at

geometrical acoustic field 1/R,,

6, =6, +x . Consider now a Riemann space defined as —yz <6, <0. Then
consider Eqg. (1.3) in the union of physical and Riemann spaces —yz <6, < yz . For

us,2
pexact

s ="+",itis b,=0 and it is
field 1/R, at 6, =-6,,.

6, =—6,+x. The locations 6, =-@, and 6, =-¢,, are considered angular

locations of shadow boundaries of an imaginary source-wedge-receiver in Riemann
space. In short, these shadow boundaries are called Riemann Boundaries. In
conclusion, we can define the diffraction angles b;as normalized distances of the

receiver from the shadow boundaries or the Riemann boundaries.

The diffraction angles are significant parameters of the diffraction study. In the
present paper we propose a way to visualize the diffraction signal as it changes with
the angles4;,6,,Q2. A figure of peJ - contours vs bj and Qcan be created

exact

representing all terms b; (j=1,2,3,4) and peJ . This figure is named diffraction map

exact

because for a given set of 6,,6,,Q each value of pZi, pi2, p2, pit, can be
found on the graph at the locations (b, Q), (b,,Q), (b,,Q), (b,,Q), respectively
[see Figure 2.1(a)]. Furthermore, each pair of angles (b;,Q) can be visualized in a
polar plot see Figure 2.1(b). Each polar plot resembles a clock with two hands, one
indicating the wedge half angle, the wedge angle hand, and another indicating the
angle b;, the diffraction angle hand.

The diffraction signal becomes maximum at b; =0, which corresponds to the

that becomes half of the geometrical acoustic

us,2

Pece:| then decreases until it reaches a minimum at

location of a shadow boundary and minimum at the location of the corresponding
image source b, =z or -7 .
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(a)
Figure 2.1 a) contours of pl,, versus (b;,Q); (b) an example of (b;,Q) for the 4

termsof pJ_, .
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3. Analytical approximate time domain solution

The authors’ approximate impulse response comes derives from the Biot-Tolstoy
for short times. Specifically, for <1, {/y <1 the Biot-Tolstoy formula is

approximated by,
hsin(b;)

4 l 1
me _; 4y \/;r+h[1 cos(b, )J ’

(3.1)

where L is the length of the least diffraction path, h a distance parameter with,
h=y?r.r, /cL, and 7 the time that starts counting the time when diffraction is first

pereceived by the receiver (L/c). Itis z=t—L/c.  is called diffraction time.

As opposed to the Biot-Tolstoy the unit step response for our proposed solution
can be found analytically. The proposed approximate unit step response is:

4 . 2 T

oy ol = % hsin(b,)—2—arctan| |- , 3.2

Papor = Z pappr — 47” rL ( 1)\/& [ = J (3.2)

where 7}, =h[1—cos(bj) a time parameter. Similar to b, r,ag expresses the

proximity of the receiver to the shadow boundary as described by Eq. (2.4). 7,

however also expresses the proximity of the receiver and the source to the edge and
also becomes smaller as the wedge angle decreases.

Figure 3.1 shows contours of the exact unit step calculation and of Eq. (1.3) at

several diffraction times 7. Good agreement between the two solutions is observed

for the two shorter times, while differences between the two solutions appear for two
larger times. Numerical experimentation has shown that the proposed approximate

solution yields less than 5% error(error =100 / ) for
7<0.02-7zr;ry, /L-c and Q2<160.
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Figure 3.1. ( first row) contours of p) versus (bj ,Q) ; (second row) contours of

pe) versus (b;,Q) for several times.
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As opposed to another approximate solution derived previously by the authors,
the approximate solution presented in this paper has an extended region of validity.
Furthermore, the proposed solution has the same time dependence namely

(1/\/?)[1/(r+r,;g )} as the previously derived solution. As a result, the proposed

solution retains the benefits of the solution in ref.. Those are: i) The impulse
response is integrable and the primitive functions of the impulse response can be
found analytically. The primitive functions can be used to compute analytically the
convolution integral that describe the diffraction response caused by an arbitrary
signal (see ref). Furthermore, the second primitive function can be used to accelerate
the numerical calculation of the convolution integral by orders of magnitude. (see
also ref.). ii) It can be proven that the impulse response of a source-wedge-receiver
configuration is equal to the impulse response of another source-edge-receiver
configuration on a half-plane. In other words, all source-wedge-receiver problems
can be solved simply by solving an equivalent and simpler half-plane problem. This
property is named mapping property. iii) A normalized time can be defined in which
the impulse response or primitive function for all source-wedge-receiver
configurations can be represented by a single curve. The normalized time is called
diffraction number and the curve generator curve. iv) The analytical Fourier
transform of the impulse response can be found leading to an approximate
diffraction solution in frequency domain.

4. Analytical approximate frequency domain solution

The Fourier transform of the impulse response of Eq. (3.1) yields:

N R R sin(b)) [1-i . _([2
S o TR oSV i R el T Y Y | VR
=~ e 2,/1-cos(b;)[ 2 T @D

where o is the angular frequency of the source. Good agreement has been observed
as frequency increases. Specifically, numerical experimentation has shown that
relative error for the magnitude of the two solutions remains under 5% for
frequencies f <zrr, /Lc and wedge angle Q <155". Also note, that Eq. (4.1) has

similar form to another solution presented by the authors in ref. [3]. As a result Eq.
(4.1) can also be used to handle diffraction by directional sources (see ref. [3] for
details).

5. Unified form for all types of incident signals

Approximate solutions for wedge diffraction in time domain and frequency
domain are presented in a unified form for all types of incident radiation. The
approximate solutions are derived for plane and cylindrical incidence using the
methodology presented in ref. [2] for the spherical incidence.

In time domain the solutions are:
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where (*) denotes convolution only for the case of cylindrical radiation. In the
two other cases (*) reduces to simple multiplication. The Fourier transform of
Eq.(5.1) yields the following frequency domain approximate solutions:
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