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ABSTRACT 

 
Analytical approximate solutions for the diffraction by a rigid wedge are derived 

in both frequency and time domain. The analysis starts with the exact solution in 

time domain. A new type of plot is presented which helps to understand how 

diffraction evolves around the boundaries of geometrical acoustics discontinuity. 

Analytical approximate solution for all types of incident radiation are presented as 

short time asymptotics of the exact solutions in time domain. The three solutions are 

presented in a unified form. Finally, using the Fourier transform approximate 

solutions are obtained in the frequency domain in a unified form for all types of 

incident radiation. 

 

Νέα αναλυτική λύση για τον υπολογισμό του ακουστικού 

πεδίου περίθλασης γύρω από ακουστικά σκληρή σφήνα 

στο πεδίο του χρόνου και στο πεδίο των συχνοτήτων 
 

ΠΕΡΙΛΗΨΗ 

 

Αναλυτικές προσεγγιστικές λύσεις για την περίθλαση από μία ακουστικά σκληρή 

σφήνα προτείνονται τόσο στο πεδίο των συχνοτήτων όσο και στο πεδίο του χρόνου. Η 

ανάλυση ξεκινά με την ακριβή λύση στο πεδίο του χρόνου. Παρουσιάζεται ένας νέος 

τύπος γραφήματος που βοηθά στην κατανόηση του τρόπου με τον οποίο η περίθλαση 

εξελίσσεται γύρω σύνορα της ασυνέχειας του γεωμετρικού ακουστικού πεδίου. 

Αναλυτικές προσεγγιστικές λύσεις για όλους τους τύπους της προσπίπτουσας 

ακτινοβολίας παρουσιάζονται ως ασυμπτωτικές μικρών χρόνων των ακριβών λύσεων 

στο πεδίο του χρόνου. Οι τρεις λύσεις παρουσιάζονται σε μια ενιαία μορφή. Τέλος, 

χρησιμοποιώντας το μετασχηματιμό Fourier, προσεγγιστικές λύσεις λαμβάνονται στο 

πεδίο των συχνοτήτων σε μια ενιαία μορφή για όλους τους τύπους προσπίπτουσας 

ακτινοβολίας.  



Ακουστική 2024 AK24_XX 

 

Introduction 
 

Mathematical solutions for the diffraction field around a wedge appeared more 

than a century ago. The reader is referred to the work of ref. [1] for a review of 

rigorous solutions. Many analytical approximate solutions appeared over time as 

asymptotics of rigorous formulas in both time and frequency domain. Detail 

presentation of the analytical approximate solutions can be found in the introduction 

sections of ref [2] (for time domain) and ref [3] (for frequency domain). The benefit 

of the approximate solutions is that they are easier to calculate compared to the 

rigorous solutions and they also can provide benefits in physical interpretation of the 

diffraction phenomenon.  

In this paper new analytical approximate solutions for the diffraction of a 

spherical wave by a rigid wedge are presented in both time and frequency domain. 

The study starts with a review of the exact solution in time domain. A new type of 

diffraction field plot is introduced, which aims to contribute to the understanding of 

diffraction formulation. A solution is initially derived as short time asymptotic of the 

exact solution in time domain. An approximate solution in frequency domain is then 

obtained using the Fourier transform. Finally, approximate solutions for cylindrical 

and plane waves are presented and the solution is reformulated into a unified form 

for all types of incident radiation. 

 

1. Exact Solution in time domain 

 
The studied solution was derived in a previous work of the authors’[2] as an 

approximation of the Biot-Tolstoy exact solution valid for short times. In the 

following we present the formulations of the Biot-Tolstoy the authors’ approximate 

formula in the form of impulse responses. 

The Biot-Tolstoy formula is given by: 
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where c is the speed of sound ( ), ,S S Sr z  and ( ), ,R R Rr z  are the source and 

receiver coordinates on a cylindrical frame of reference that has the edge of the 

wedge (z-axis) as symmetry axis z. The diffraction signal arrives to the receiver at 

time t=L/c, where L is the least diffraction path ( ) ( )
2 2

S R S RL r r z z= + + − . A 

detailed presentation of the wedge geometry is shown in Fig. 1 of ref [2]. The terms 

F and ζ are functions of time t and distances , , ,S S R Rr z r z , while the terms 
jb  are 

functions of the source, receiver and wedge angles , ,R S   . The solution is 
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summation of 4 similar terms that only have different terms 
jb . In the present paper, 

jb  terms are defined as 
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. As it will be shown in the following 
jb  are important parameters for the diffraction 

problem and henceforth they will be called diffraction angles. 

The unit step response of the Biot -Tolstoy can be calculated as, 
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Despite the singularity of the impulse response, it can be proven that the unit step 

response is not singular. Specifically, one can express j

exactp  as, 
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then the Hölder inequality yields: 
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Thus, it is proven that ,us j

exactp  is bounded.  

 

2. Diffraction Signal new type of plots 

 
The exact unit step response can be found by Eq. (1.3) with no singularities 

using a numerical quadrature technique. The authors have used the ‘quadgk’ 

command of MATLAB which is based on adaptive Gauss-Kronrod quadrature.  

The diffraction signal depends primarily on the angle parameters , ,R S   .  The 

shadow boundaries divide the diffraction field in regions that contain different 

number of geometrical acoustics contributions (incidence or reflections). For an 

open wedge the two shadow boundaries are the shadow boundary of incidence and 

the shadow boundary of reflection from the face of the wedge facing the source or 

the shadow boundaries of the reflections from both wedge faces. For closed wedges 
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the signal might be subject to multiple reflections before reaching the receiver. 

Starting from one face of the edge multiple reflections occur between the faces. The 

phenomenon stops when the last reflection does not illuminate the opposing edge, 

thus creating a shadow boundary. The same process is repeated starting from the 

other face of the wedge to determine the other shadow boundary. This last reflection 

is called exiting reflection. For closed wedges, the shadow boundary is the plane 

determined by the image source of the exiting reflection (named exiting image 

source) and the edge line. For open it is the plane determined by the image source of 

the sources of reflection or the actual source and the edge line. The magnitude of the 

exiting reflections, or first reflections, or incident signal is represented by 1/R1, 

where R1 is the distance of the receiver and the corresponding image source or 

source. The angular locations of the shadow boundaries 
1b ,

2b  and of the image 

source 
1is ,

2is  differ by  . The shadow boundary angular locations can be found 

by:  
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and thus, 
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Based on the sign parameters 
1 2,s s  Eq. (1.2) can be reformulated as, 
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Equation (2.3) allows us to interpret the terms 
jb  as normalized distances between 

R  or 
R−  from the shadow boundary locations 

1b  and 
2b . Specifically, it can be 

proven that: 
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Same holds for 
2s and the parameters 

3 4,b b . From the two factors ,1us

exactp  and ,2us

exactp  

associated with the shadow boundary BI only one handles the discontinuity of the 

geometrical acoustic signal at the shadow boundary. For example, for 
1 ' 's = + only 
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1b  becomes zero in 0 R    and thus only 
,1us

exactp  becomes half of the 

geometrical acoustic field 
11/ R , 

,1us

exactp  then decreases until it reaches a minimum at 

1R b  = + . Consider now a Riemann space defined as 0R −   . Then 

consider Eq. (1.3) in the union of physical and Riemann spaces 
R  −   . For 

1 ' 's = + , it is 
2 0b =  and it is 

,2us

exactp  that becomes half of the geometrical acoustic 

field 
11/ R  at 

1R b = − . 
,2us

exactp  then decreases until it reaches a minimum at 

1R b  = − + . The locations 
1R b = −  and 

2R b = −  are considered angular 

locations of shadow boundaries of an imaginary source-wedge-receiver in Riemann 

space. In short, these shadow boundaries are called Riemann Boundaries. In 

conclusion, we can define the diffraction angles 
jb as normalized distances of the 

receiver from the shadow boundaries or the Riemann boundaries. 

The diffraction angles are significant parameters of the diffraction study. In the 

present paper we propose a way to visualize the diffraction signal as it changes with 

the angles , ,R S   . A figure of ,us j

exactp  contours vs 
jb  and  can be created 

representing all terms 
jb  (j=1,2,3,4) and ,us j

exactp . This figure is named diffraction map 

because for a given set of , ,R S    each value of ,1 ,2 ,3 ,4, , , ,us us us us

exact exact exact exactp p p p can be 

found on the graph at the locations ( )1,b  , ( )2 ,b  , ( )3 ,b  , ( )4 ,b  , respectively 

[see Figure 2.1(a)]. Furthermore, each pair of angles ( ),jb   can be visualized in a 

polar plot see Figure 2.1(b). Each polar plot resembles a clock with two hands, one 

indicating the wedge half angle, the wedge angle hand, and another indicating the 

angle 
jb , the diffraction angle hand. 

The diffraction signal becomes maximum at 0jb = , which corresponds to the 

location of a shadow boundary and minimum at the location of the corresponding 

image source  or -jb  = . 

 

Figure 2.1 a) contours of j

exactp  versus ( ),jb  ; (b) an example of ( ),jb   for the 4 

terms of j

exactp . 
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3. Analytical approximate time domain solution 

 
The authors’ approximate impulse response comes derives from the Biot-Tolstoy 

for short times. Specifically, for 1 , / 1   the Biot-Tolstoy formula is 

approximated by, 
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where L is the length of the least diffraction path, h  a distance parameter with, 

2 /R Sh r r cL= , and  the time that starts counting the time when diffraction is first 

pereceived by the receiver ( )/L c . It is /t L c = − .  is called diffraction time. 

As opposed to the Biot-Tolstoy the unit step response for our proposed solution 

can be found analytically. The proposed approximate unit step response is: 
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lag jh b  = −
 

 a time parameter. Similar to 
jb , j

lag  expresses the 

proximity of the receiver to the shadow boundary as described by Eq. (2.4). j

lag , 

however also expresses the proximity of the receiver and the source to the edge and 

also becomes smaller as the wedge angle decreases. 

Figure 3.1 shows contours of the exact unit step calculation and of Eq. (1.3) at 

several diffraction times τ. Good agreement between the two solutions is observed 

for the two shorter times, while differences between the two solutions appear for two 

larger times. Numerical experimentation has shown that the proposed approximate 

solution yields less than 5% error ( )100 /us us us

appr exact exacterror p p p= −  for 

0.02 /S Rr r L c     and 160 . 

 

Figure 3.1. ( first row) contours of ,us j

exactp  versus ( ),jb   ; ( second row) contours of 

,us j

apprp  versus ( ),jb   for several times. 



Ακουστική 2024 AK24_XX 

 

As opposed to another approximate solution derived previously by the authors, 

the approximate solution presented in this paper has an extended region of validity. 

Furthermore, the proposed solution has the same time dependence namely 

( ) ( )1/ 1/ j

lag   +
 

 as the previously derived solution. As a result, the proposed 

solution retains the benefits of the solution in ref.. Those are: i) The impulse 

response is integrable and the primitive functions of the impulse response can be 

found analytically. The primitive functions can be used to compute analytically the 

convolution integral that describe the diffraction response caused by an arbitrary 

signal (see ref). Furthermore, the second primitive function can be used to accelerate 

the numerical calculation of the convolution integral by orders of magnitude. (see 

also ref.). ii) It can be proven that the impulse response of a source-wedge-receiver 

configuration is equal to the impulse response of another source-edge-receiver 

configuration on a half-plane. In other words, all source-wedge-receiver problems 

can be solved simply by solving an equivalent and simpler half-plane problem. This 

property is named mapping property. iii) A normalized time can be defined in which 

the impulse response or primitive function for all source-wedge-receiver 

configurations can be represented by a single curve. The normalized time is called 

diffraction number and the curve generator curve. iv) The analytical Fourier 

transform of the impulse response can be found leading to an approximate 

diffraction solution in frequency domain. 

 

4. Analytical approximate frequency domain solution 
 

The Fourier transform of the impulse response of Eq. (3.1) yields: 
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where  is the angular frequency of the source. Good agreement has been observed 

as frequency increases. Specifically, numerical experimentation has shown that 

relative error for the magnitude of the two solutions remains under 5% for 

frequencies /S Rf r r Lc  and wedge angle  155 . Also note, that Eq. (4.1) has 

similar form to another solution presented by the authors in ref. [3]. As a result Eq. 

(4.1) can also be used to handle diffraction by directional sources (see ref. [3] for 

details). 

 

5. Unified form for all types of incident signals 

 
 Approximate solutions for wedge diffraction in time domain and frequency 

domain are presented in a unified form for all types of incident radiation. The 

approximate solutions are derived for plane and cylindrical incidence using the 

methodology presented in ref. [2] for the spherical incidence.  

In time domain the solutions are: 
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where (*) denotes convolution only for the case of cylindrical radiation. In the 

two other cases (*) reduces to simple multiplication. The Fourier transform of 

Eq.(5.1) yields the following frequency domain approximate solutions: 
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